Dopaminergic Modulation of cAMP Drives Nonlinear Plasticity across the Drosophila Mushroom Body Lobes

نویسندگان

  • Tamara Boto
  • Thierry Louis
  • Kantiya Jindachomthong
  • Kees Jalink
  • Seth M. Tomchik
چکیده

BACKGROUND Activity of dopaminergic neurons is necessary and sufficient to evoke learning-related plasticity in neuronal networks that modulate learning. During olfactory classical conditioning, large subsets of dopaminergic neurons are activated, releasing dopamine across broad sets of postsynaptic neurons. It is unclear how such diffuse dopamine release generates the highly localized patterns of plasticity required for memory formation. RESULTS Here we have mapped spatial patterns of dopaminergic modulation of intracellular signaling and plasticity in Drosophila mushroom body (MB) neurons, combining presynaptic thermogenetic stimulation of dopaminergic neurons with postsynaptic functional imaging in vivo. Stimulation of dopaminergic neurons generated increases in cyclic AMP (cAMP) across multiple spatial regions in the MB. However, odor presentation paired with stimulation of dopaminergic neurons evoked plasticity in Ca(2+) responses in discrete spatial patterns. These patterns of plasticity correlated with behavioral requirements for each set of MB neurons in aversive and appetitive conditioning. Finally, broad elevation of cAMP differentially facilitated responses in the gamma lobe, suggesting that it is more sensitive to elevations of cAMP and that it is recruited first into dopamine-dependent memory traces. CONCLUSIONS These data suggest that the spatial pattern of learning-related plasticity is dependent on the postsynaptic neurons' sensitivity to cAMP signaling. This may represent a mechanism through which single-cycle conditioning allocates short-term memory to a specific subset of eligible neurons (gamma neurons).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Learning-Related cAMP Signaling and Stimulus Integration in the Drosophila Olfactory Pathway

Functional imaging with genetically encoded calcium and cAMP reporters was used to examine the signal integration underlying learning in Drosophila. Dopamine and octopamine modulated intracellular cAMP in spatially distinct patterns in mushroom body neurons. Pairing of neuronal depolarization with subsequent dopamine application revealed a synergistic increase in cAMP in the mushroom body lobes...

متن کامل

Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila

Although associative learning has been localized to specific brain areas in many animals, identifying the underlying synaptic processes in vivo has been difficult. Here, we provide the first demonstration of long-term synaptic plasticity at the output site of the Drosophila mushroom body. Pairing an odor with activation of specific dopamine neurons induces both learning and odor-specific synapt...

متن کامل

Eight Different Types of Dopaminergic Neurons Innervate the Drosophila Mushroom Body Neuropil: Anatomical and Physiological Heterogeneity

We examined tyrosine hydroxylase (TH-GAL4) expression and anti-TH immunoreactivity in the Drosophila protocerebrum and characterized single cell clones of the TH-GAL4 neurons. Eight clusters of putative dopaminergic neurons were characterized. Neurons in three of the clusters project to the mushroom body neuropil: PAM neurons project to the medial portion of the horizontal lobes; PPL1 neurons p...

متن کامل

Punishment Prediction by Dopaminergic Neurons in Drosophila

The temporal pairing of a neutral stimulus with a reinforcer (reward or punishment) can lead to classical conditioning, a simple form of learning in which the animal assigns a value (positive or negative) to the formerly neutral stimulus. Olfactory classical conditioning in Drosophila is a prime model for the analysis of the molecular and neuronal substrate of this type of learning and memory. ...

متن کامل

Cyclic AMP-dependent plasticity underlies rapid changes in odor coding associated with reward learning.

Learning and memory rely on dopamine and downstream cAMP-dependent plasticity across diverse organisms. Despite the central role of cAMP signaling, it is not known how cAMP-dependent plasticity drives coherent changes in neuronal physiology that encode the memory trace, or engram. In Drosophila, the mushroom body (MB) is critically involved in olfactory classical conditioning, and cAMP signalin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014